Tuesday, July 22, 2008

Earth Policy News - Solar Thermal Power Coming to a Boil


Earth Policy Institute Plan B Update For Immediate Release July 22, 2008  SOLAR THERMAL POWER COMING TO A BOIL  http://www.earth-policy.org/Updates/2008/Update73.htm  Jonathan G. Dorn  After emerging in 2006 from 15 years of hibernation, the solar thermal power industry experienced a surge in 2007, with 100 megawatts of new capacity coming online worldwide. During the 1990s, cheap fossil fuels, combined with a loss of state and federal incentives, put a damper on solar thermal power development. However, recent increases in energy prices, escalating concerns about global climate change, and fresh economic incentives are renewing interest in this technology.  Considering that the energy in sunlight reaching the earth in just 70 minutes is equivalent to annual global energy consumption, the potential for solar power is virtually unlimited. With concentrating solar thermal power (CSP) capacity expected to double every 16 months over the next five years, worldwide installed CSP capacity will reach 6,400 megawatts in 2012--14 times the current capacity. (See data at http://www.earth-policy.org/Updates/2008/Update73_data.htm#table1.)  Unlike solar photovoltaics (PVs), which use semiconductors to convert sunlight directly into electricity, CSP plants generate electricity using heat. Much like a magnifying glass, reflectors focus sunlight onto a fluid-filled vessel. The heat absorbed by the fluid is used to generate steam that drives a turbine to produce electricity. Power generation after sunset is possible by storing excess heat in large, insulated tanks filled with molten salt. Since CSP plants require high levels of direct solar radiation to operate efficiently, deserts make ideal locations.  Two big advantages of CSP over conventional power plants are that the electricity generation is clean and carbon-free and, since the sun is the energy source, there are no fuel costs. Energy storage in the form of heat is also significantly cheaper than battery storage of electricity, providing CSP with an economical means to overcome intermittency and deliver dispatchable power.  The United States and Spain are leading the world in the development of solar thermal power, with a combined total of over 5,600 megawatts of new capacity expected to come online by 2012. Representing over 90 percent of the projected new capacity by 2012, the output from these plants would be enough to meet the electrical needs of more than 1.7 million homes.  The largest solar thermal power complex in operation today is the Solar Electricity Generating Station in the Mojave Desert in California. Coming online between 1985 and 1991, the 354-megawatt complex has been producing enough power for 100,000 homes for almost two decades. In June 2007, the 64-megawatt Nevada Solar One plant became the first multi-megawatt commercial CSP plant to come online in the United States in 16 years.  Today, more than a dozen new CSP plants are being planned in the United States, with some 3,100 megawatts expected to come online by 2012. (See data at http://www.earth-policy.org/Updates/2008/Update73.htm#table6.) Some impressive CSP projects in the planning stages include the 553-megawatt Mojave Solar Park in California, the 500-megawatt Solar One and 300-megawatt Solar Two projects in California, a 300-megawatt facility in Florida, and the 280-megawatt Solana plant in Arizona.  In Spain, the first commercial-scale CSP plant to begin operation outside the United States since the mid-1980s came online in 2007: the 11-megawatt PS10 tower. The tower is part of the 300-megawatt Solúcar Platform, which, when completed in 2013, will contain ten CSP plants and produce enough electricity to supply 153,000 homes while preventing 185,000 tons of carbon dioxide (CO2) emissions annually. All told, more than 60 plants are in the pipeline in Spain, with 2,570 megawatts expected to come online by 2012.  Economic and policy incentives are partly responsible for the renewed interest in CSP. The incentives in the United States include a 30-percent federal Investment Tax Credit (ITC) for solar through the end of 2008, which has good prospects for being extended, and Renewable Portfolio Standards in 26 states. California requires that utilities get 20 percent of their electricity from renewable sources by 2010, and Nevada requires 20 percent by 2015, with at least 5 percent from solar power. The primary incentive in Spain is a feed-in tariff that guarantees that utilities will pay power producers €0.26 (40¢) per kilowatt-hour for electricity generated by CSP plants for 25 years.  In the southwestern United States, the cost of electricity from CSP plants (including the federal ITC) is roughly 13–17¢ per kilowatt-hour, meaning that CSP with thermal storage is competitive today with simple-cycle natural gas-fired power plants. The U.S. Department of Energy aims to reduce CSP costs to 7–10¢ per kilowatt-hour by 2015 and to 5–7¢ per kilowatt-hour by 2020, making CSP competitive with fossil-fuel-based power sources.  Outside the United States and Spain, regulatory incentives in France, Greece, Italy, and Portugal are expected to stimulate the installation of 3,200 megawatts of CSP capacity by 2020. China anticipates building 1,000 megawatts by that time. Other countries developing CSP include Australia, Algeria, Egypt, Iran, Israel, Jordan, Mexico, Morocco, South Africa, and the United Arab Emirates. (See map at http://www.earth-policy.org/Updates/2008/Update73_data.htm#fig7.)  Using CSP plants to power electric vehicles could further reduce CO2 emissions and provide strategic advantages by relaxing dependence on oil. In Israel, a tender issued by the Ministry for National Infrastructures for the construction of CSP plants and a 19.4¢ per kilowatt-hour feed-in tariff for solar power systems are sparking interest in developing up to 250 megawatts of CSP in the Negev Desert. This would produce enough electricity to run the 100,000 electric cars that Project Better Place, a company focused on building an electric personal transportation system, is planning to put on Israeli roads by the end of 2010.  A study by Ausra, a solar energy company based in California, indicates that over 90 percent of fossil fuel–generated electricity in the United States and the majority of U.S. oil usage for transportation could be eliminated using solar thermal power plants--and for less than it would cost to continue importing oil. The land requirement for the CSP plants would be roughly 15,000 square miles (38,850 square kilometers, the equivalent of 15 percent of the land area of Nevada). While this may sound like a large tract, CSP plants use less land per equivalent electrical output than large hydroelectric dams when flooded land is included, or than coal plants when factoring in land used for coal mining. Another study, published in Scientific American in January 2008, proposes using CSP and PV plants to produce 69 percent of U.S. electricity and 35 percent of total U.S. energy, including transportation, by 2050.  CSP plants on less than 0.3 percent of the desert areas of North Africa and the Middle East could generate enough electricity to meet the needs of these two regions plus the European Union. Realizing this, the Trans-Mediterranean Renewable Energy Cooperation--an initiative of The Club of Rome, the Hamburg Climate Protection Foundation, and the National Energy Research Center of Jordan--conceived the DESERTEC Concept in 2003. This plan to develop a renewable energy network to transmit power to Europe from the Middle East and North Africa calls for 100,000 megawatts of CSP to be built throughout the Middle East and North Africa by 2050. Electricity delivery to Europe would occur via direct current transmission cables across the Mediterranean. Taking the lead in making the concept a reality, Algeria plans to build a 3,000-kilometer cable between the Algerian town of Adrar and the German city of Aachen to export 6,000 megawatts of solar thermal power by 2020.  If the projected annual growth rate of CSP through 2012 is maintained to 2020, global installed CSP capacity would exceed 200,000 megawatts--equivalent to 135 coal-fired power plants. With billions of dollars beginning to flow into the CSP industry and U.S. restrictions on carbon emissions imminent, CSP is primed to reach such capacity.  #     #     #  For more information on Earth Policy Institute’s goal of 200,000 MW of CSP worldwide, part of  a plan to cut carbon emissions 80 percent by 2020, see Chapters 11-13 in Plan B 3.0: Mobilizing to Save Civilization, available at www.earthpolicy.org for free downloading.  For information contact:  Media Contact: Reah Janise Kauffman Tel: (202) 496-9290 x 12 E-mail: rjk (at) earthpolicy.org  Research Contact: Janet Larsen Tel: (202) 496-9290 x 14 E-mail: jlarsen (at) earthpolicy.org  Earth Policy Institute 1350 Connecticut Ave. NW, Suite 403 Washington, DC 20036 Web: www.earthpolicy.org   

Saturday, July 19, 2008

Al Gore's Climate Challenge Speech

Monday, July 14, 2008

UW-Madison News Release--State Forest Response to Climate Change


FOR IMMEDIATE RELEASE 7/14/08  CONTACT: David Mladenoff, (608) 262-1992, djmladen@ wisc.edu  SCATTERED NATURE OF WISCONSIN'S WOODLANDS COULD COMPLICATE FORESTS' RESPONSE TO CLIMATE CHANGE  MADISON - If a warmer Wisconsin climate causes some northern tree species to disappear in the future, it's easy to imagine that southern species will just expand their range northward as soon as the conditions suit them.  The reality, though, may not be nearly so simple. A model developed by University of Wisconsin-Madison forest ecologists Robert Scheller and David Mladenoff suggests that while certain northern species, such as balsam fir, spruce and jack pine, are likely to decline as the state's climate warms, oaks, hickories and other southern Wisconsin trees will be slow to replace them.   Why? Not only is warming expected to outpace the speed at which southern trees can migrate northward, but barriers to dispersal - particularly agricultural lands - will also likely delay their progress, says Mladenoff.   "The result is that northern forest biomass in the future - that is, the standing amount of forest - could decrease, because the trees that are there now will be experiencing less than optimal conditions," he says. "And the southern species aren't going to fill in as quickly as we'd like." He and Scheller report their findings in the current issue of Climate Research.  Mladenoff explains that trees "move" into new areas by producing seeds, which are then carried over short distances by wind, birds or mammals. Under the right conditions, dispersed seeds then grow into seedlings and eventually mature trees, which produce their own seeds to start the process all over again.  Already a slow process, dispersal becomes even slower when forests are broken up by farmland and urban areas - or fragmented - like they are in Wisconsin. Not only is less suitable habitat available overall, but patches of it can also be widely scattered, making it tough for seeds to cross the gaps. In particular, Mladenoff points to the wide band of agricultural land that runs across the middle of the state as a major obstacle to the northward migration of southern trees.  To arrive at their conclusions, Scheller and Mladenoff fed current satellite classification and forest inventory data for a 1.5 million-hectare area of northwestern Wisconsin into a model, LANDIS-II, that's designed to predict how landscapes will respond to climate shifts. Using two well-established sets of future climate predictions, they then examined changes in parameters such as forest succession, seed dispersal and tree growth during the next 200 years.  In the face of the scientists' predictions, is there anything woodland managers can do now? Mladenoff cautions people not to make any drastic management changes. But one thing managers might begin to try is assisted migration: testing how certain southern Wisconsin species - or even different genetic stocks of the same species - do when planted up north on a trial basis. A prime candidate for experiments like this might be sugar maple, says Mladenoff, which is already widely distributed across Wisconsin and is projected to "do OK" on moist soils in the north when the climate warms.   The state might even consider bringing back the field trials that used to go on routinely in the 1950s and '60s, he says, in which researchers would collect genetic variants of individual tree species all over the state and then plant them in many locations to see where they did best. Although time-consuming, an approach like this could help ease some of the uncertainty we're facing now.  "A lot of this is about our incomplete knowledge of how genetically diverse some species are," Mladenoff says, "and how adaptable they may be in different climates." ### - Madeline Fisher, (608) 890-0465, mmfisher@wisc.edu    **************************************************** For questions or comments about UW-Madison's email news release system, please send an email to: releases@news.wisc.edu  For more UW-Madison news, please visit:  http://www.news.wisc.edu/  University Communications University of Wisconsin-Madison 27 Bascom Hall 500 Lincoln Drive Madison, WI 53706  Phone: (608) 262-3571 Fax: (608) 262-2331   

Tuesday, July 08, 2008

GM to build world's biggest rooftop solar station in Spain

GM to build world's biggest rooftop solar station in Spain

US automaker General Motors said Tuesday it will equip the roof of its factory in Zaragoza in northeastern Spain with solar panels to create the world's largest rooftop source of power from the sun.

The electricity produced by the 10 megawatt installation will be used by the plant, GM's biggest in Europe, and also be sold to the local power grid, a company spokesman said.

"GM's Zaragoza plant will become home to the biggest roof-top solar power station worldwide. This has significant potential to...(Full Story)

--------------------------

It fascinates me how a "US" company can do things like this to increase plant efficiency overseas, but close plants in the US and repeatedly kill the economies of small cities and towns in their own country. Why isn't this being done here? Why aren't the gas hog plants in the US being re-tooled to build fuel-efficient vehicles? They might as well be giving every US citizen the finger behind their backs. If I were Janesville's City Manager (Mayor?) or the one in charge of any of the other towns affected, I would lead a charge to seize the plant via eminent domain and then have the local citizens start up a community-owned competitor to make vehicles and other heavy equipment that are highly efficient and make sense.

Dan